BREAK OUT SESSION

Big Data Systems

Session Leaders
Magdalena Balazinska & Kunle Olukotun
Overarching Themes in this Area

• Democratizing big data
• Data acquisition and cleaning
• Making complex analytics fast
• Data velocity
 – Need to process data streams from IoT, video, other
• Data variety
 – Need to process graphs, structured, unstructured, multimedia
• Data volume
 – Must integrate and analyze immobile data, distributed around world
• Reproducibility, long-term preservation, and sharing
Recent Successes (last 3 years)

• Increasingly efficient, open-source systems
 – Spark, Impala, Myria, Asterix, GraphLab, etc.
• Growing cloud service offerings
 – Data management and also ML services
• Growing availability of ML algos and datasets
• Knowledge bases
• Systems that go from high-level DSLs to hardware-specialized implementations
• Big science projects (e.g., LHC and SDSS/LSST)
• Tools for data science and collaboration
Major Obstacles Impeding More Rapid Progress

- Data science education across domains
- Cloud services can be hard to use cost-effectively
- ML and DB remain poorly integrated
- We settled on commodity but need to explore other architectures
- Need to unify abstractions
 - Big data is a mix of relational algebra, linear algebra, ML, etc.
- Data science is a high-touch business
 - How to choose ML algo? Tune data analysis pipelines?
 - Can we have even higher-level interfaces for data science?
 - Data in many different formats
- Data correctness, corruption, long-term preservation
- Hard to share:
 - Create metadata automatically
 - Make data not only available but easily accessible
 - Risks associated with data sharing (burden, responsibility, scooped)
Areas that Need More Attention

• Cross-disciplinary data science education
 – Across levels undergraduate, graduate, master’s
• Storage remains the bottleneck
• Compute
 – Future of hardware is increasingly heterogeneous
 – but still no abstractions for shielding complexity
• Cross-stack innovations:
 – PL, compiler, database, OS, networking, hardware
• End-to-end analysis pipelines
 – Need to support users end-to-end
• Reproducibility, sharing, and reuse
• Long-term curation and preservation
Strategic Priorities & Investments That Will Advance Innovation

• *Democratizing Big Data*

 – Productivity tools and methods
 • End-to-end data science pipelines
 • Easier-to-use cloud analytics systems
 • Cost-effective cloud analytics

 – Expressing complex analysis
 • Data management + ML + ...
 • Also leverage legacy code
 • Common analytic frameworks (laptop to cluster/clouds)
 • Higher-level interfaces to data analytics
 – SQL, visualizations, natural language, other?

 – Correctness and auditability

 – Applications of data science
Strategic Priorities & Investments That Will Advance Innovation

• **Reproducibility**
 – Data sharing and preservation
 – Code sharing and preservation
 – Responsibility and ethics of data analysis
 – Long-term preservation

• **Infrastructure**
 – A data observatory (a single, logical place)
 – Partner with cloud providers
 – Leverage existing HPC centers
 – Explore what is the best, global approach
Strategic Priorities & Investments That Will Advance Innovation

• *Data acquisition and cleaning*

 – Data cleaning and integration
 – Managing probabilities, errors, approximations
 • Data is not always precise: density distributions
 • Computation/analysis uses approximations
Strategic Priorities & Investments That Will Advance Innovation

• *Making complex analytics fast*
 – Interactive analytics
 – Innovation in architectures
 – Across-the-stack innovations
 – Benchmarks: data sets, analytics, etc.
 – In-memory analytics
 – Complex analytics
 – Mobile devices or even IoT devices
 – Federated analytics
 – HPC + dataflow systems
Strategic Priorities & Investments That Will Advance Innovation

• **Data velocity**
 – Stream processing

• **Data variety**
 – Different types of data structured, unstructured, etc.

• **Data volume**
 – Manage data value over time
 – Analysis over data distributed across data centers