BREAK OUT SESSION

Large-Scale Inference and Learning
Overarching Themes in this Area

• Large-scale means different things to different people
 – size: KB, MB, GB, PB, ...;
 – complexity: multi-modal, high-dimensional;
 – distributed/parallel: storage; computation, etc.

• Resource constraints:
 – Human insight/knowledge
 – data-throughput, computational platform, runtime, communication/energy, storage

• Large-scale data doesn’t equal large-scale inference
Recent Successes (last 3 years)

• Novel methodological approaches to parallel/distributed computation for learning/inference using synchronization, randomization, etc.

• Novel “systems” approaches (databases, HPC, hardware, libraries) to machine learning

• Application areas – computer vision, NLP, speech, computational genomics (data + algorithms + “systems”)

• Large-scale stochastic optimization
 – Low-profile example: large-scale logistic regression
 – High-profile example: large-scale deep learning
Major Obstacles Impeding More Rapid Progress

• Value of interdisciplinary research (siloed funding mechanisms, venues for publishing, academia incentives)
• Funding for ML software platforms and guidance for non-experts
• Availability of large-scale data (+computing platforms) in academia
• Human-machine interactions for inference/learning
 – Better labeled data
 – Interpretable algorithms
 – Effects of data preprocessing decisions
 – Interactive data analysis methods
• Interdisciplinary training: CS/ML/statistics “interfacing” to applied domains
Areas of Neglect

• Interpretable machine learning
 – Large-scale ML “systems” for hypotheses testing
 – Interactive ML “pipelines” for large-scale learning
• Single machine out-of-core ML algorithms
• Domain-specific vs. domain-agnostic algorithms
• Scalable complex models and methods
• Theory for large-scale non-convex distributed learning and optimization
• Other issues
 – Better partnership with industry to access large-scale data
 – Platforms for sharing data
 – Benchmark Validation datasets
Strategic Priorities & Investments That Will Advance Innovation

• Combining “systems” (databases, HPC, hardware, libraries) and ML algorithms
 – To help scientific domain experts/problems

• Interpretable machine learning
 – Interpretable to people who generate/use the data
 – Human-machine interactive analytics

• Valuing interdisciplinary research
 – siloed funding mechanisms
 – venues for publishing, academia incentives, etc
Other stuff
Overarching Themes in this Area

• Large-scale means different things to different people (size: MB, GB, PB, ...; complexity: multi-modal, high-dimensional; storage; computation)
 – Lots of data
 – Distributed & parallel computing
 – Resource (data-throughput, computational platform, runtime, communication/energy, storage) limited learning

• Large-scale data doesn’t equal large-scale inference
Recent Successes (last 3 years)

• Novel approaches for parallel computation using synchronization, randomization, etc.

• Deep learning (large data + GPU, CPU, FPGAs etc implementation)

• Application areas – computer vision, NLP, speech, Computational genomics (data + algorithms)

• “Systems” (HPC, hardware, libraries) + machine learning
Major Obstacles Impeding More Rapid Progress

- Big data, small labels – innovative algorithms, human-machine interactions
- Availability of large-scale data (+computing platforms) in academia
- CS and ML training of students, particularly for applied domains
- Funding for ML software platforms and guidance for non-experts
- Value of interdisciplinary research (siloed funding mechanisms, venues for publishing, academia incentives)
Areas of Neglect

• Interactive pipeline for large-scale learning
• Building-blocks for machine learning
• Scalable complex models and methods
• Out-of-core learning algorithms
• Domain-specific personalized vs. generalized algorithms
• Interpretable machine learning
• Theory for large-scale non-convex distributed learning and optimization
• Large-scale systems that test hypotheses
Strategic Priorities & Investments That Will Advance Innovation

• “Systems” (HPC, hardware, libraries) + machine learning

• Better partnership with industry to access large-scale data

• Platforms for sharing data

• Benchmark Validation datasets