BREAK OUT SESSION

Learning Analytics & Educational Data Mining

Co-leaders
Aditya Johri, George Mason Univ
Gautam Biswas, Vanderbilt Univ
Overarching Themes

• How can learning analytics support innovations in education?
 – This includes individual and collaborative learning environments, intelligent tutors, open-ended learning environments, adaptive hypermedia, recommender systems, flipped classrooms, Maker spaces, informal/blended learning, Learning @ scale, visual analytics
 – Learning analytics as a change agent for educational innovation

• Focus on Personalized Education
 – What kind of data to collect to support personalized education?
 – Learn about human cognition

• Infrastructure needs to advance learning analytics and educational data mining
 – Access to data/share datasets
 – Access to new/novel techniques for analysis
Overarching Themes

• **What exactly are the Data Sciences?**
 – How do we train a new generation of data scientists?
 – Use the vast amounts of data collected by Flickr, Amazon, etc.

• **Professional development across all levels**
 – Teachers, Researchers

• **Undergraduate education**
 – Develop analytics and mining techniques to support students through their degree curricula
 – What kind of support do we provide?
Recent Success

• Data Collection/Online Analysis/Assessment Reports for Students and Teachers
 – Assisstments: web based intelligent tutor design by Neil Heffernan at WPI
 – widely used
• Analyzing the success of MOOCs
 – Large dropout rates
 – Participation of students and instructors
 – MOOCdb – Common interface to edX & Coursera data
• Data Sharing for Analytics
 – MIT Scratch online Community
 – CMU’s LEARNLAB – microanalysis of student learning with intelligent tutors
• Algorithmic advances
 – From HMMs to Recurrent neural networks to Deep Learning of student models
 – Mining and Analytics to understand students learning behaviors –
 cognitive, metacognitive, affect, and self-regulation processes
• Dashboards for student progress
• The very fact that we are even talking about LA/EDM
Major obstacles

• Educational institutions/administrators have no idea of how to use data collected in any significant way
• Access to data/lack of shared datasets
 – How do we integrate data from multiple sources
 – Lack of standardized formats
 – Need instrumented environments to collect data
• Infrastructure to keep up with novel methods/techniques
• Still haven’t been able to use collected data to develop comprehensive models of “how people learn”
 – What kind of data do we need to support comprehensive personalized learning?
 – Collaborative learning
• Privacy issues
 – Educational institutions are risk averse when it comes to sharing data
• Need Interdisciplinary/Multidisciplinary approaches
 – Domain experts + data science experts
Areas of Neglect

• Interpretive understanding of context
 – Who defines students success (graduating on time/not going to prison?)
 – How do we define learning?

• Professional development
 – Education researchers still largely do not use analytics/data science
 – Practitioners have little knowledge of how to access analytics to support/improve their learning

• Analytics focused on micro-interactions
 – Lack of macro or cross-level understanding

• Policy decisions to support data sharing while preserving privacy and security
Strategic Priorities to Advance Innovation

• Infrastructure
 – Shared data and repositories
 – Shared tools for analysis
 – Building tool chains that support end to end analysis

• Bridging perspectives
 – Need domain experts and end-users involved from the start
 – May require more cross-disciplinary courses and curricula

• Professional development

• Support to Scale-up innovations